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Abstract

An optimal adjoint variational data assimilation technique has been developed to assimilate storm surges sampled along
the U.S. East Coast into the two-dimensional Princeton Ocean Model (POM). This scheme uses the wind drag coefficient as
the control variable since the storm surge at the coast are assumed to be predominately determined by the wind set-up on the
shelf. In the optimal data assimilation procedure, the water level misfit is defined as the cost function and it’s gradient can
be determnined by the adjoint model. In turn, the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) (Liu and
Nocedal, 1989) quasi-Newton optimization method is implemented to search for the optimal wind drag coefficient by
minimizing the cost function for the large scale optimization.

The data assimilation system was tested by identical experiments in which the pseudo-observations are generated by the
nummerical model with predefined wind drag coefficients. The results show that the wind drag coefficients can be recovered
from observed water levels very accurately by using this adjoint optimal data assimilation system. The model is then applied
to assimilate storm surges caused by hurricane Floyd, September 1999, along the U.S. East Coast. The model is forced by
wind/pressure fields of the meso-scale NCEP’s Eta Data Assimilation System (EDAS) 32km wind. Surge heights at 18 NOS’s
water level stations are assimilated into the model to produce the optimal coastal ocean water level nowcasts which serves as
the initial conditions for the forecast model which, in turn, can provide the water level boundary conditions to a bay or harbor

water level forecast model.

Introduction

Storm surges produced by strong storms in the U.S,
East Coast cause property and structural damage and
human life lost. A meteorologically forced (strong wind
stress and atmospheric pressure depression) long wave
motion, the extreme sustained storm surge increases the
waier surface elevations about the astronomical tide,
causing innundation in low-lying coastal areas. The
accurate and timely prediction of storm surges become
critical in evacuation and rescue planning for saving
human life.

The storm surge modeling has been developed and
advanced for more than 30 years (Bode, et.al., 1997).
Innovative developments in the storm surge prediction, for
example, the coupled surge-wave modeling and data
assimilation, have been included in several operational
storm surge systems implemented in western Europe
(Gerritsen, et. al., 1995). Traditionally, the storm surge
modeling has been treated as a initial boundary value
problem with the forward integration of a set of partial
differential equations, usually the equations of continuity
and momentum. Conventional model calibration and
verification procedures are conducted by adjusting model
parameters including the bathymetry, bottom friction and
wind drag coefficients, and the diffusivity. The model
deficiency, however, always exists due to many factors
such as grid resolution and boundary forcing accuracy.

The storm surge forecasts rely upon the numerical weather
predictions (NWP) for model surface forcing. Therefore,
the accuracy of NWP becomes critical to the storm surge
modeling success.

The inverse methods are then introduced to improve
the model performance by dealing with errors between
model results and reliable measurements. The adjoint
method and Kalman filtering are the most common
approaches of the inverse method. In this study, the
adjoint approach is adopted to adjust the wind drag
coefficients by minimizing the differences between the
modeled and observed water levels.

The development of the adjoint model for the two-
dimensional barotropic Princeton Ocean Model (POM,
Blumberg and Mellor, 1987) is described. The models are
then applied to simulate storm surges, produced by
Hurricane Floyd, during September 13 to 19, 1999 along
the U.S. East Coast.

Bydrodynamic Model
The governing equations of two-dimensional POM are
given as follows:
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where H, 7, and 7, are water depth at rest, wind stress and
bottom friction, and D=H+v total water depth, g the
acceleration due to gravity, f the Coriolis parameter, p the
water density. And the horizontal viscosity and diffusion
terms F, and F, are defined as
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where Ay, the vertically integrated horizontal eddy
viscosity, is defined by the Smagorinsky formula

A, =CAx&y%|VV+VV’| 6)

where C, a non-dimensional parameter, is set to be 0.2 in
this study; Ax and Ay are the grid spacings in the x and y
directions for each grid cell.

To simplify the adjoint model development, the fully
non-linear two dimensional POM is linearized by: (1)
neglecting the variation of surface elevation v relative to
water depth (D=H); (2) neglecting the horizontal
advection and diffusion terms (F, and F,); (3) linearizing
the bottom friction terms with a constant bottom friction
coefficient, C;=1.0x107. Thus, the linearized 2-D POM
governing equations are as follows,
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Adjoint Model

For the linearized 2-D POM with well-posed initial
and open boundary conditions , the procedure of deriving
adjoint equations is presented. The basic procedure in the
variational adjoint method consists of minimizing a cost
function that represents the misfits between observed data
and model output. This minimization is performed subject
to the strong constraints of satisfying the governing
equations, The constraint minimization involves
Lagrange multipliers and leads to additional equations
(known as adjoint equations) from which Lagrange
multipliers are determined. The model state variabies and
Lagrange multipliers are used 10 compute the cost function
and its gradient from which the cost function is minimized
to obtain the optimal control variables.

In this variational problem, the cost function defined

J:%J.'U.W(ihho)zdxdydr (10)
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where h, and h are observed and simulated elevations and
W is the weighting factor. The variational problem is to
minimize cost function J subject to equations (7)-(9).
Introducing Lagrange multipliers A, A, A, for the
constraint governing equations (7), (8), (9) (Lawson et al,
1995}, the first variation of the cost function J can be
written as
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The corresponding adjoint variables are defined as
follows: A, is the adjoint variable of h, A, is the adjoint
variable of U, and X, is the adjoint variable of V,
respectively,

Considering the specific case defined above, using
wind drag coefficients as the only control variables, the
adjoint equations are expressed as follows,
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and the function increment becomes
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The above process showed that cost function
minimization has resulted in new eguations (12)-(14)
which are called adjoint equations (Zhang, et.al., 2000).
And the adjoint variables are calculated by integrating the
adjoint equations. The gradient of the cost function with
respect to the control variable, wind drag coefficient C,,
can be computed by (16). It is shown from (16} that, if C,
varies spatially and temporally, the gradients of cost
function with respect to C, can be computed by integrating
adjoint model once regardless of the number of control
variables.

= _”J‘ (A,JUWIUW + AVIUWIVw)dxdydr (16)

An iterative scheme for 24 hours data assimilation is
given in Fig.1.
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Fig. 1. Flow Chart for a 24-Hour Water Level Data
Assimilation

Simulations

The orthogonal curvilinear model grid (Fig.2),
dimensioned 120 by 85, covers the coastal waters in the
U.S. East Coast with a grid resolution of 5 t0 32 km. The
model is forced with US NWS/NCEP's Eta Data
Assimilation System (EDAS) 32km wind analyses. Wind
vectors for Floyd at 00Z, September 16 interpolated to the
mode] grid are shown in Figs. 3.
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Fig. 2. Model grid and NOS water level station location.

The forward storm surge simulation started from rest
at September 5, 1999 (Julian Day 248) for 7 days without
data assimilation to produce a restart file describing the
entire model dynamics as the initial condition for the data
assimilation. The adjoint model started to assimilate water
levels on September 12 (Julian Day 255) an continued to
September 19 (Julian Day 262).
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Fig. 3. EDAS surface wind vectors.

Twin Experiment

In order to check the performance of adjoint optimal
data assimilation technique, identical twin experiments
are usually considered. In the twin experiment, the

‘pseudo-observation data are generated by the numerical

model. This is the best situation for data assimilation since
the pseudo-observational data contain the same dynamics
as the nomerical model without other errors. In this
study, the pseudo-subtidal water levels are generated by
integrating the model with 8 predefined time-dependent
sub-regional wind drag coefficients {(definition of C, is
shown in Fig. 2). Hourly model data are sub-sampled at 18
selected locations. These data are treated as pseudo-
observations in the subsequent data assimilation with an
arbitrary C, value as a first guess. Fig. 5 shows the
optimal C,, obtained at the end of each 24-hours data
assimilation window, converges to the predefined values
relatively fast and the differences are in the order of 10°®,
This test verifies that the adjoint model works properly.

Data Assimilation

Hourly observations during Floyd at 18 NOAA/NOS
water level stations along the U.S. East Coast are
processed to remove the astronomical signals. The de-
tided signals (Fig.6 solid line} are then assimilated into
the adjoint model. The model spun off for 7 days (Julian
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Day 248 to 255) from rest before assimilating the water
levels. Fig.6 shows the simulated water levels with (dot-
dashed lines and without (dotted lines) the data
assimilation and the observations (solid lines) at 8
representative stations from north to south. The surge
height reached about I m at South Carolina coast where
Floyd landed. Water levels are amplified at Bridgeport,
CT and Willets Pt., NY when surge wave entered Long
Island Sound. In most stations, the simulated water levels
with the data assimilation are much closer to the
observations than the no data assimilation simulated water
levels. However, the difference is insignificant at northeast
stations such as Portland, Maine where the storm effect is
minimal. The peak surge root-mean-square errors for all
18 stations are reduced from 30 cm without data
assirnilation to 22 cm with data assimilation.

An experiment has been conducted to examine the
data assimilation scheme performance in simulating surge
heights at locations where no observational station exists.
In this experiment, the water level observations at Sandy
Hook, NI (#8) and Ft. Pulaski, GA (#16) are excluded
from the data assimilation simulation. Fig.7 shows the
simulated water level time history at these two stations
from this experiment, observations, and with (including
these stations) and without data assimilation. The
simulated water level differences between the data
assimilation including and excluding these two stations
are insignificant. The simulated water levels at stations on
both sides of these two stations show no difference for both
cases. This experiment indicates that water levels at
locations without measurements can be filled by
assimilating the observations at nearby stations if they are
subject to similar dynamic effects.
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Fig. 5. Water levels with (dot-dashed line) and without
(dotted lines}) data assimilation compared with
observations (solid lines) at 8 locations.

Conclusions

The variational adjoint model, using the wind drag
coefficient as the control variable, has been developed base
on the two-dimensional linearized POM. Observed water
levels are used to adjust 8 wind drag coefficients,
representing each model sub-regions, by minimizing the
model simulated water level misfits. The adjoint model
has been validated with a twin experiment and tested on
amodel grid covering coastal waters in US East Coast for
simulating storm surges. The surge heights simulated by
the adjoint model at locations without measurements are
more accurate than that without data assimilation.

The adjoint model for water fevel simulations in
shallow water area can be improved by including the non-
lingar terms such as advection and bottom friction.
However, such a model would require more memory
storage and computation. The wind stress direction can
also be optimized by breaking the wind drag coefficient
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into each components, i.e., Cy, and C,,. Preliminary test
shows wnore accurate simulated water levels with
additional wind stress direction adjustment. The open
houndary condition can also be included in the adjoint
model as a control variable. The astronemical tide can be
included in conjunction with the boundary condition,

1r .
(#9) SANDY HOOK, NJ

=
L]
T

___________ ek SR AT WS

=

~— Obsarvations
o -» With Data Assimllation

5

‘Water Levela (M)
[}

[ 18 Ft. Pulasi, FL ' Ay
%,

Bs L

06 | i -4 Excluding Thin Statlon
—= Without Dota Asalmilaiion

L L . . L
255 258 57 258 25 280 281 282

Julian Days (1998)

Fig. 6. Observed and simulated subtidal water levels at
Sand Hook, NJ and Ft. Pulaski, GA with data assimilation
(circle: including, Triangle: excluding, these two stations)
and without data assimilation.
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